How heating tracers drive self-lofting long-lived stratospheric anticyclones: simple dynamical models (2024)

Allen, D. R., Douglass, A. R., Manney, G. L., Strahan, S. E., Krosschell, J. C., Trueblood, J. V., Nielsen, J. E., Pawson, S., and Zhu, Z.: Modeling the Frozen-In Anticyclone in the 2005Arctic Summer Stratosphere, Atmos. Chem. Phys., 11, 4557–4576, https://doi.org/10.5194/acp-11-4557-2011, 2011. a

Allen, D.R., Fromm, M.D., KablickIII, G.P., and Nedoluha, G.E.: Smoke with induced rotation and lofting(SWIRL) in the stratosphere, J. Atmos. Sci., 77, 4297–4316, 2020. a, b

Berrisford, P., Marshall, J., and White, A.: Quasigeostrophic potential vorticity in isentropic coordinates, J. Atmos. Sci., 50, 778–782, 1993.  a, b

Bishop, C.H. and Thorpe, A.J.: Potential vorticity and the electrostatics analogy: Quasi-geostrophic theory, Q. J. Roy. Meteorol. Soc., 120, 713–731, 1994. a

Boffetta, G. and Ecke, R.E.: Two-Dimensional Turbulence, Annu. Rev. Fluid Mech., 44, 427–451, https://doi.org/10.1146/annurev-fluid-120710-101240, 2012. a

Bui, H.H., Smith, R.K., Montgomery, M.T., and Peng, J.: Balanced and unbalanced aspects of tropical cyclone intensification, Q. J. Roy. Meteorol. Soc., 135, 1715–1731, 2009. a

Davies, H.C.: The quasigeostrophic omega equation: Reappraisal, refinements, and relevance, Mon. Weather Rev., 143, 3–25, 2015. a, b, c, d

Dinh, T.P., Durran, D., and Ackerman, T.: Maintenance of tropical tropopause layer cirrus, J. Geophys. Res.-Atmos., 115, D02104, https://doi.org/10.1029/2009JD012735, 2010. a

Doglioni, G., Aquila, V., Das, S., Colarco, P. R., and Zardi, D.: Dynamical perturbation of the stratosphere by a pyrocumulonimbus injection of carbonaceous aerosols, Atmos. Chem. Phys., 22, 11049–11064, https://doi.org/10.5194/acp-22-11049-2022, 2022. a, b, c, d

Dunkerton, T., Hsu, C.-P.F., and McIntyre, M.E.: Some Eulerian and Lagrangian Diagnostics for a Model Stratospheric Warming, J. Atmos. Sci., 38, 819–844, https://doi.org/10.1175/1520-0469(1981)038<0819:SEALDF>2.0.CO;2, 1981. a

Gill, A.: hom*ogeneous intrusions in a rotating stratified fluid, J. Fluid Mech., 103, 275–295, 1981. a

Haynes, P.H. and McIntyre, M.E.: On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces, J. Atmos. Sci., 44, 828–841, 1987. a

Haynes, P.H. and Ward, W.E.: The Effect of Realistic Radiative Transfer on Potential Vorticity Structures, Including the Influence of Background Shear and Strain, J. Atmos. Sci., 50, 3431–3453, https://doi.org/10.1175/1520-0469(1993)050<3431:TEORRT>2.0.CO;2, 1993. a, b, c, d, e

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., DeChiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., deRosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteorol. Soc., 146, 1999–2049, 2020. a

Hoskins, B., Pedder, M., and Jones, D.W.: The omega equation and potential vorticity, Q. J. Roy. Meteorol. Soc.,129, 3277–3303, 2003. a, b, c, d, e

Hoskins, B.J., McIntyre, M.E., and Robertson, A.W.: On the use and significance of isentropic potential vorticity maps, Q. J. Roy. Meteorol. Soc., 111, 877–946, 1985. a, b, c

KablickIII, G., Allen, D.R., Fromm, M.D., and Nedoluha, G.E.: Australian pyroCb smoke generates synoptic-scale stratospheric anticyclones, Geophys. Res. Lett., 47, e2020GL088101, https://doi.org/0.1029/2020GL088101, 2020. a, b, c, d, e, f, g

Khaykin, S., Legras, B., Bucci, S., Sellitto, P., Isaksen, L., Tence, F., Bekki, S., Bourassa, A., Rieger, L., Zawada, D., Jumelet, J., and Godin-Beekmann, S.: The 2019/20Australian wildfires generated a persistent smoke-charged vortex rising up to 35 km altitude, Commun. Earth Environ., 1, 22, https://doi.org/10.1038/s43247-020-00022-5, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q

Khaykin, S.M., DeLaat, A.J., Godin-Beekmann, S., Hauchecorne, A., and Ratynski, M.: Unexpected self-lofting and dynamical confinement of volcanic plumes: the Raikoke2019 case, Sci. Rep., 12, 22409, https://doi.org/10.1038/s41598-022-27021-0, 2022. a, b, c, d

Kida, S.: Motion of an Elliptic Vortex in a Uniform Shear Flow, J. Phys. Soc. Jpn., 50, 3517–3520, https://doi.org/10.1143/JPSJ.50.3517, 1981. a, b

Lestrelin, H., Legras, B., Podglajen, A., and Salihoglu, M.: Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia2020 to Canada2017, Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, 2021. a, b, c, d, e, f, g, h, i, j, k, l

Manney, G., Livesey, N., Jimenez, C., Pumphrey, H., Santee, M., MacKenzie, I., and Waters, J.: EOS Microwave Limb Sounder observations of “frozen-in” anticyclonic air in Arctic summer, Geophys. Res. Lett., 33, L06810, https://doi.org/10.1029/2005GL025418, 2006. a

Mariotti, A., Legras, B., and Dritschel, D.: Vortex stripping and the erosion of coherent structures in 2-dimensional flows, Phys. Fluids, 6, 3954–3962, https://doi.org/10.1063/1.868385, 1994. a, b

McIntyre, M.: On the Antarctic ozone hole, J. Atmos. Terr. Phys., 51, 29–43, https://doi.org/10.1016/0021-9169(89)90071-8, 1989. a

Meacham, S., Pankratov, K., Shchepetkin, A., and Zhmur, V.: The interaction of ellipsoidal vortices with background shear flows in a stratified fluid, Dynam. Atmosp. Oceans, 21, 167–212, https://doi.org/10.1016/0377-0265(94)90008-6, 1994. a, b

Möller, J.D. and Shapiro, L.J.: Balanced Contributions to the Intensification of Hurricane Opal as Diagnosed from a GFDL Model Forecast, Mon. Weather Rev., 130, 1866–1881, https://doi.org/10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2, 2002. a, b, c

Plumb, R.A.: Zonally Symmetric Hough Modes and Meridional Circulations in the Middle Atmosphere, J. Atmos. Sci., 39, 983–991, https://doi.org/10.1175/1520-0469(1982)039<0983:ZSHMAM>2.0.CO;2, 1982.  a

Plumb, R.A., Waugh, D.W., Atkinson, R.J., Newman, P.A., Lait, L.R., Schoeberl, M.R., Browell, E.V., Simmons, A.J., and Loewenstein, M.: Intrusions into the lower stratospheric Arctic vortex during the winter of 1991–1992, J. Geophys. Res.-Atmos., 99, 1089–1105, https://doi.org/10.1029/93JD02557, 1994. a

Podglajen, A., Legras, B., Lapeyre, G., Plougonven, R., Zeitlin, V., Brémaud, V., and Sellitto, P.: Dynamics of diabatically forced anticyclonic plumes in the stratosphere, Q. J. Roy. Meteorol. Soc., https://doi.org/10.1002/qj.4658, in press, 2024. a, b, c, d, e, f, g, h, i, j, k, l, m

Schubert, W.H.: Bernhard Haurwitz Memorial Lecture(2017): Potential Vorticity Aspects of Tropical Dynamics, arXiv [preprint], arXiv:1801.08238, https://doi.org/10.48550/arXiv.1801.08238, 2018. a

Schubert, W.H. and Alworth, B.T.: Evolution of potential vorticity in tropical cyclones, Q. J. Roy. Meteorol. Soc., 113, 147–162, 1987. a

Schubert, W.H. and Hack, J.J.: Transformed Eliassen balanced vortex model, J. Atmosp. Sci., 40, 1571–1583, 1983. a, b

Sellitto, P., Belhadji, R., Cuesta, J., Podglajen, A., and Legras, B.: Radiative impacts of the Australian bushfires 2019–2020 – Part2: Large-scale and in-vortex radiative heating, Atmos. Chem. Phys., 23, 15523–15535, https://doi.org/10.5194/acp-23-15523-2023, 2023. a, b

Thorpe, A.: Diagnosis of Balanced Vortex Structure Using Potential Vorticity, J. Atmos. Sci., 42, 397–406, https://doi.org/10.1175/1520-0469(1985)042<0397:DOBVSU>2.0.CO;2, 1985. a

Wang, S. and Smith, R.K.: Consequences of regularizing the Sawyer–Eliassen equation in balance models for tropical cyclone behaviour, Q. J. Roy. Meteorol. Soc., 145, 3766–3779, https://doi.org/10.1002/qj.3656, 2019. a

Wirth, V. and Dunkerton, T.J.: A unified perspective on the dynamics of axisymmetric hurricanes and monsoons, J. Atmos. Sci., 63, 2529–2547, 2006. a, b

Wirth, V. and Dunkerton, T.J.: The dynamics of eye formation and maintenance in axisymmetric diabatic vortices, J. Atmos. Sci., 66, 3601–3620, 2009. a

How heating tracers drive self-lofting long-lived stratospheric anticyclones: simple dynamical models (2024)
Top Articles
Latest Posts
Article information

Author: Rev. Porsche Oberbrunner

Last Updated:

Views: 6566

Rating: 4.2 / 5 (53 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Rev. Porsche Oberbrunner

Birthday: 1994-06-25

Address: Suite 153 582 Lubowitz Walks, Port Alfredoborough, IN 72879-2838

Phone: +128413562823324

Job: IT Strategist

Hobby: Video gaming, Basketball, Web surfing, Book restoration, Jogging, Shooting, Fishing

Introduction: My name is Rev. Porsche Oberbrunner, I am a zany, graceful, talented, witty, determined, shiny, enchanting person who loves writing and wants to share my knowledge and understanding with you.